IBM SmartCloud Desktop Infrastructure: IBM Virtual Desktop on IBM Flex System

IBM Redbooks Solution Guide

The IBM® SmartCloud™ Desktop Infrastructure offers robust, cost-effective, and manageable virtual desktop solutions for a wide range of clients, user types, and industry segments. These solutions can help to increase business flexibility and staff productivity, reduce IT complexity, and simplify security and compliance. Based on a reference architecture approach, this infrastructure supports various hardware, software, and hypervisor platforms. Figure 1 illustrates the SmartCloud Desktop Infrastructure offering.

![SmartCloud Desktop Infrastructure Diagram]

IBM Virtual Desktop, which is a type of SmartCloud Desktop Infrastructure, that runs on IBM Flex System™ enhances the overall quality and reliability of virtual desktops. It gives users constant, consistent, high-quality access to virtual desktops from various end-point devices with enhanced management, integration, disaster recovery, and mobility capabilities.

Did you know?

The hosted virtual desktop (HVD) approach is the most common form of implementing a virtualized user desktop environment. With HVDs, all applications and data that the user interacts with are stored centrally and securely in the data center. These applications never leave the data center boundaries. This setup makes management and administration much easier and gives users access to data and applications from anywhere and at anytime.
Business value

Several key factors drive virtual desktops in today’s business climate:

- Data security and compliance concerns
- Complexity and costs of managing existing desktop environments
- An increasingly mobile workforce
- The changing ownership of end-point devices with bring-your-own-device (BYOD) programs
- The need for rapid recovery from theft, failure, and disasters

IBM SmartCloud Desktop Infrastructure offers the following advantages:

- Simplifies desktop administration, support, and management
- Enhances security and compliance management
- Improves availability and reliability
- Enables users to work anytime, anywhere quickly and easily regardless of location or device
- Better supports growth initiatives for mobility and flexible work locations

Solution overview

The IBM SmartCloud Desktop Infrastructure solution with IBM Virtual Desktop running on IBM Flex System includes the following components:

- User access devices
 - Desktop PCs
 - Thin clients
 - Notebooks
 - Other handheld mobile devices
- Virtual infrastructure software
 - Virtual Bridges VERDE (Virtual Enterprise Remote Desktop Environment)
- Hardware platform
 - IBM Flex System
 - IBM System Storage®
- Integration services
 - Assess and plan
 - Design
 - Implement
 - Operate and manage
The SmartCloud Desktop Infrastructure solution consists of three functional layers:

- **User access layer**

 The user access layer is a user entry point into the virtual infrastructure. It includes traditional desktop PCs, thin clients, notebooks, and other handheld mobile devices.

- **Virtual infrastructure services layer**

 The virtual infrastructure services layer provides the secure, compliant, and highly available desktop environment to the user. The user access layer interacts with the virtual infrastructure layer through display protocols. The RDP, SPICE, and NX+ display protocols are available in IBM Virtual Desktop.

- **Storage services layer**

 The storage services layer stores user persona, profiles, gold master images, and actual virtual desktop images. The storage protocol is an interface between virtual infrastructure services and storage services. The storage protocols include Network File System (NFS), Common Internet File System (CIFS), iSCSI, and Fibre Channel.

The virtual infrastructure services layer has the following key functional components:

- **Hypervisor**

 The hypervisor provides a virtualized environment for running virtual machines (VMs) with the desktop operating systems in them. These VMs are called *hosted virtual desktops*.

- **Hosted virtual desktops**

 An HVD is a VM that runs a user desktop operating system and applications.
• Connection broker

The connection broker is the point of contact for the client access devices that request the virtual desktops. The connection broker manages the authentication function and ensures that only valid users are allowed access to the infrastructure. When authenticated, it directs the clients to their assigned desktops. If the virtual desktop is unavailable, the connection broker works with the management and provisioning services to have the VM ready and available.

• Management and provisioning services

The management and provisioning services allow the centralized management of the virtual infrastructure, providing a single console to manage multiple tasks. They provide image management, lifecycle management, and monitoring for hosted VMs.

• High availability services

High availability (HA) services ensure that the VM is up and running even if a critical software or hardware failure occurs. HA can be a part of connection broker function for stateless HVDs or a separate failover service for dedicated HVDs.

A dedicated (or persistent) HVD is assigned permanently to the specific user (similar to a traditional desktop PC). Users log in to the same virtual desktop image every time they connect. All changes that they make and each application that they install are saved when the user logs off. The dedicated desktop model is best for users who need the ability to install more applications, store data locally, and retain the ability to work offline.

A stateless (pooled or non-persistent) HVD is allocated temporarily to the user. After the user logs off, changes to the image are discarded (reset). Then, the desktop becomes available for the next user, or a new desktop is created for the next user session. A persistent user experience (the ability to personalize the desktop and save data) is achieved through user profile management, folder redirection, and similar approaches. Specific individual applications can be provided to nonpersistent desktops by using application virtualization technologies, if required.

Functional layers and components are supported by a hardware infrastructure platform that must provide the following features:

• Sufficient computing power to support demanding workloads
• Scalability to satisfy future growth requirements
• Reliability to support business continuity and 24x7 operations
• High-speed, low-latency networking for a better user experience
• Cost-efficient storage to handle large amounts of VM and user data
• Centralized management of combined physical and virtual infrastructure from a single user interface to simplify and automate deployment, maintenance, and support tasks

IBM Flex System is a future-proof, integrated platform that satisfies these requirements.

IBM Flex System platform

IBM Flex System is an integrated platform that delivers custom-tuned, client-specific configurations for optimum flexibility. IBM Flex System combines compute nodes, networking, storage, and management into a complete data center building block that is built for future-proof, heterogeneous data centers with flexibility and open choice of architectures, hypervisors, and environments.
Figure 3 shows IBM Flex System.

![Image of IBM Flex System](image.jpg)

Figure 3. IBM Flex System

IBM Flex System offers unique capabilities that make this platform an exceptional choice for the deployment of the SmartCloud Desktop Infrastructure solution:

- **Compute nodes**

 Compute nodes provide sufficient processing capacity for the most demanding SmartCloud Desktop Infrastructure deployments. IBM Flex System x240 is a dual-socket Intel Xeon processor E5-2600 product family-based compute node. It supports the most powerful 135 W Intel Xeon processor E5-2690, up to 768 GB of memory, and up to 16 physical I/O connections to provide scalable, high-density HVD deployments.

- **Networking**

 SmartCloud Desktop Infrastructure requires sufficient network bandwidth and efficient traffic management to host as many VMs as possible to ensure that all computing resources are not underused. IBM Flex System networking, when integrated into a chassis, can help to reduce communication latency and provide the required bandwidth with 10-Gb Ethernet LAN connectivity that has 40-Gb uplinks and 8-Gb or 16-Gb FC SAN connectivity. Virtual Fabric Adapters offer virtual network interface card (NIC) capability to allow up to 32 logical ports on a single compute node, with controllable bandwidth allocation to manage traffic prioritization. In addition, the integrated design simplifies the overall infrastructure to save costs and make scalability and management tasks easier.

- **Management**

 IBM Flex System Manager™ is a systems management appliance that drives efficiency and cost savings in the data center. Flex System Manager provides a pre-integrated and virtualized management environment across servers, storage, and networking that is easily managed from a single interface. A single focus point for seamless multichassis management provides an instant and resource-oriented view of chassis and chassis resources for IBM System x® and IBM Power Systems™ compute nodes. You can reduce the number of interfaces, steps, and clicks it takes to manage IT resources. You can intelligently manage and deploy workloads based on resource availability and predefined policies. And you can manage events and alerts to increase system availability and reduce downtime in addition to reducing operational costs.
As a virtualized storage system that provides block volumes and file volumes, IBM Storwize® V7000 Unified complements virtual desktop environments. The system offers robust enterprise-class storage capabilities, which include thin provisioning, automated tiering, internal and external virtualization, clustering, replication, multiprotocol support, and a next-generation graphical user interface (GUI). These features can be applied in virtual desktop environments in applications, for example, that optimize storage capacity and performance or that simplify desktop user profile management and backup. The Storwize V7000 Unified is flexible enough to support entry virtual desktop environments, but can also be scaled to support enterprise virtual desktop environments.

The N series systems provide powerful virtualization and thin provisioning capabilities to help you maximize storage utilization and minimize the use of power, cooling, and floor space. At the same time, you can improve staff productivity with an integrated suite of application-aware manageability software that offers policy-based automation to otherwise manual tasks, improving storage efficiency.

In summary, because of its integrated capabilities, IBM Flex System in a SmartCloud Desktop Infrastructure solution can help to achieve the following advantages:

- Better VM density due to large memory and I/O capacity support
- Lower communication latency due to integrated switching capabilities for a better user experience
- Simplified deployment and management of both physical and virtual infrastructures due to integrated design and IBM Flex System Manager capabilities

Solution architecture

IBM Virtual Desktop with VERDE from Virtual Bridges extends enterprise-class security, higher availability, reliable backup and management, and an open architecture to the virtual desktops by using technologies such as kernel-based VM (KVM) for optimized performance and scalability.

IBM Virtual Desktop provides an end-to-end desktop management solution that combines virtual desktop infrastructure (VDI), integrated offline VDI (for disconnected and mobile use), and remote branch support. It offers availability to personal PC desktops anywhere, and includes the following capabilities:

- Rapidly installs and deploys Microsoft Windows and Linux virtual desktops on a single server with the option to expand as required
- Accesses desktop images from various user devices, such as tablets, thin clients, old desktops, netbooks, and notebooks
- Supports local USB connections
- Delivers integrated offline VDI and branch VDI to remote users
- Easily configures and manages the virtual desktop environment
- Backs up and recovers virtual desktops easily and seamlessly
Additional capabilities are provided in the following areas:

- Integrated application management with application virtualization products to provide more flexibility and choice in integrating virtual desktops into the existing IT applications and infrastructure.
- Better control of the desktop management infrastructure and desktop images.
- Enhanced storage optimization and cache I/O technology.
- Clustering and automated failover for disaster recovery.
- Single sign-on (SSO) and a wider choice of desktop types with more flexibility for users to have a better experience.

Figure 4 shows the components of the IBM Virtual Desktop on IBM Flex System solution.

Figure 4. Components of the IBM Virtual Desktop on IBM Flex System solution

The core hardware component of the solution is IBM Flex System with integrated x86 compute nodes, LAN switches and management appliance, and the external storage system:

- **IBM Flex System x240 compute nodes**
 The x240 compute nodes belong to a stateless HVD cluster pool and are configured with local hard disk drives (HDDs) for KVM hypervisor installation and solid-state drive (SSD) storage for gold master image caching. The nodes use NFS storage to access gold master images and application packages. High availability is provided by stateless clustering with a distributed connection broker architecture, where each cluster node runs a connection broker. That is, if a VM or node fails, the connection broker redirects the user to another available virtual desktop.
• LAN switches
IBM Flex System Fabric EN4093 10Gb Scalable Switch provides a redundant high-speed, low-latency 10-Gb Ethernet network and NFS storage connectivity for the compute nodes.

• IBM Flex System Manager
IBM Flex System Manager is a systems management appliance that drives efficiency and cost savings in the data center. It provides a preintegrated and virtualized management environment across servers, storage, and networking that is easily managed from a single interface.

• IBM System Storage N series
IBM System Storage N series storage systems provide primary and auxiliary storage for midsized enterprises. They consolidate all of their fragmented application-based storage and unstructured data into one single-code system. Easily managed and expandable, this platform can help IT generalists increase their effectiveness. These systems offer integrated data access, intelligent management software, and data protection capabilities.

The VERDE Core and VDI services have the following software components:

• VERDE Client
VERDE Client is client software for accessing virtual desktops that run on VERDE servers. VERDE Client can run on a tablet; a Windows, Linux, or Mac PC or notebook; a thin client; and other devices.

• Distributed connection brokering
Distributed connection brokering handles user authentication requests and redirects them to a virtual desktop that is based on assigned policies. The distributed architecture provides no single point of failure. If a node fails, user requests are handled by other available connection brokers.

• Stateless clustering
Stateless clustering provides high availability and a massive scale-out capability to the VDI deployment.

• Directory services integration
Directory services integration is a KVM-based VERDE VDI hypervisor that is used to host VMs.

• Hypervisor
The KVM-based VERDE VDI hypervisor hosts the VMs.

• External storage
External NFS-based storage, for example, IBM System Storage N Series, is used to store gold master images, application packages, and persistent user data.

Users can access their personalized virtual desktop from a company notebook, their home PC, a thin-client device, a Mac, or a tablet. Users open VERDE Client to display their desktop.

Usage scenarios
In the healthcare industry, staff are constantly on the move, but need fast, security-rich access to patients' electronic medical records that are in compliance with data privacy regulations. By combining SSO capabilities with a virtual desktop infrastructure, healthcare staff can access multiple systems and applications to obtain medical records or images with a single, more secure sign-on.
In the education industry, a virtual desktop infrastructure can help schools to extend the lifecycle of existing PCs, in addition to allowing the schools to adopt new technology. Students can receive the same quality of education, regardless of the availability of hardware, device, or location. At the same time, IT staff can reduce the time, cost, and complexity that are associated with maintenance, upgrades, provisioning, reimaging and repairing the school’s technology assets.

For the public sector, local, state, and federal agencies must extend support to an ever-increasing collection of personal devices and do so under stringent security measures. A virtual desktop can give personnel the anytime, anywhere access they need to maintain productivity. It can also provide the centralized security and control that are necessary to help maintain extreme data confidentiality. Agencies can also expedite provisioning and upgrades to multiple devices at a sustainable level of cost and effort.

Integration

IBM SmartCloud Desktop Infrastructure enables easy integration with optional security and endpoint management technologies, including the following technologies:

- IBM Security Access Manager for Enterprise Single Sign-On offers streamlined user access with automated sign-on and sign-off plus a single password for all applications. This technology can reduce help desk costs, improve productivity, and strengthen security for virtualized desktops.

- IBM Tivoli® Endpoint Manager combines endpoint and security management into a single solution. With this solution, your team can see and manage physical and virtual endpoints, such as servers, desktops, roaming notebooks, and specialized equipment such as point-of-sale devices, automated teller machines (ATMs), and self-service kiosks.

IBM SmartCloud Desktop Services

Transitioning to a virtualized environment from traditional desktops can be a time-consuming effort, often requiring specialized skills that are not readily available in-house. You must carefully manage implementations to support many users, applications, and complementary software to help provide the security and management functions that are necessary to succeed.

By using time-proven methods, proprietary tools, and extensive expertise that are developed through real-world client implementations, IBM SmartCloud Desktop Services can accelerate your transition to a less complex, virtualized desktop environment. Robust services, which include assessment and planning, design and implementation, and operation and management, in addition to a phased delivery approach, help to speed your return on investment and reduce the risk of business disruption. Through these services, a broader range of users, from power users to disconnected users, can have faster, more security-rich access to resources, helping to improve their productivity and increasing business flexibility.
Figure 5 illustrates the services approach.

Figure 5. SmartCloud Desktop Services

Reference design

The IBM Virtual Desktop on IBM Flex System solution has the following key building blocks:

- Compute nodes that support stateless HVD pools and running connection and dynamic VM provisioning services
- Integrated management appliance
- External shared storage system

Table 1 shows the building blocks of the IBM Virtual Desktop on IBM Flex System solution that are used in small, medium, and large deployments, where all HVDs are stateless. The actual number of users or virtual desktops per node depends on the user type and memory, CPU, and storage requirements for those VMs.

Table 1. Building blocks of the IBM Virtual Desktop on IBM Flex System solution

<table>
<thead>
<tr>
<th>Building block</th>
<th>Number of elements in a building block</th>
<th>Element type and configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Small</td>
<td>Medium</td>
</tr>
<tr>
<td>Stateless HVD server pool</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>(N+1 redundancy)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Management appliance</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>External shared storage</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Figure 6 shows the components of IBM Flex System that are used in the typical medium-sized reference design of the IBM Virtual Desktop on IBM Flex System solution with stateless HVDs.

![Diagram](image)

Figure 6. Reference configuration for the SmartCloud Desktop Infrastructure with IBM Flex System solution

Table 2 highlights the details of the reference configuration of the IBM Virtual Desktop on IBM Flex System solution that is shown in Figure 6.

Table 2. Reference configuration of the IBM Virtual Desktop on IBM Flex System solution

<table>
<thead>
<tr>
<th>Diagram reference</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1x Enterprise Chassis with installed infrastructure components</td>
</tr>
<tr>
<td></td>
<td>2x EN4093 10Gb Scalable switches with activated Upgrade 1 (28 internal ports, 12 external ports) and optical SW SFP+ transceivers (not shown in Figure 6)</td>
</tr>
<tr>
<td></td>
<td>2x Chassis Management Modules (not shown in Figure 6)</td>
</tr>
<tr>
<td>2</td>
<td>8x x240 compute nodes for stateless HVDs (N+1 redundancy)</td>
</tr>
<tr>
<td></td>
<td>2x Intel Xeon processor E5-2680</td>
</tr>
<tr>
<td></td>
<td>256 GB memory</td>
</tr>
<tr>
<td></td>
<td>2x 250 GB NL SATA HDDs</td>
</tr>
<tr>
<td></td>
<td>2x 200 GB SATA SSDs</td>
</tr>
<tr>
<td></td>
<td>1x ServeRAID M5115</td>
</tr>
<tr>
<td></td>
<td>4x 10 Gb Ethernet ports on CN4054 Virtual Fabric Adapter</td>
</tr>
<tr>
<td>3</td>
<td>1x IBM Flex System Manager management appliance</td>
</tr>
<tr>
<td>4</td>
<td>1x IBM System Storage N Series external shared storage</td>
</tr>
</tbody>
</table>
Ordering information

Table 3 shows the part numbers and quantities for ordering the reference configuration that is shown in Figure 6.

Table 3. Ordering information for IBM Flex System running IBM Virtual Desktop solution

<table>
<thead>
<tr>
<th>Diagram reference</th>
<th>Description</th>
<th>Part number</th>
<th>Qty</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Chassis with installed infrastructure components</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IBM Flex System Enterprise Chassis with 2x2500W PSU, Rackable</td>
<td>8721A1x*</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>IBM Flex System Enterprise Chassis 2500W Power Module</td>
<td>43W9049</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>IBM Flex System Enterprise Chassis 80mm Fan Module Pair</td>
<td>43W9078</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>IBM Flex System Chassis Management Module</td>
<td>68Y7030</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>IBM Flex System Fabric EN4093 10Gb Scalable Switch</td>
<td>49Y4270</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>IBM Flex System Fabric EN4093 10Gb Scalable Switch (Upgrade 1)</td>
<td>49Y4798</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>IBM SFP+ SR Transceiver</td>
<td>46C3447</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Compute nodes for stateless HVDs (N+1 redundancy)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IBM Flex System x240 Compute Node (Intel Xeon processor E5-2680)</td>
<td>8737M1x*</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Intel Xeon 8C Processor Model E5-2680 130W 2.7GHz/1600MHz/20MB</td>
<td>81Y5188</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>16GB (1x16GB, 2Rx4, 1.5V) PC3-12800 CL11 ECC DDR3 1600MHz LP RDIMM</td>
<td>00D4968</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>IBM 200GB 1.8in SATA MLC Enterprise SSD</td>
<td>49Y6119</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>IBM 250GB 2.5in SFF HS 7.2K 6Gbps NL SATA HDD</td>
<td>81Y9722</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>ServeRAID M5115 SAS/SATA Controller for IBM Flex System</td>
<td>90Y4390</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>ServeRAID M5100 Series Enablement Kit for IBM Flex System x240</td>
<td>90Y4342</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>ServeRAID M5100 Series SSD Expansion Kit for IBM Flex System x240</td>
<td>90Y4391</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>3 Year Essential Support 24x7 4 Hour Response</td>
<td>00X8489</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>IBM Flex System CN4054 10Gb Virtual Fabric Adapter</td>
<td>90Y3554</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>Management appliance</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IBM Flex System Manager Node with embedded 10Gb Virtual Fabric, Xeon 8C E5-2650 95W 2.0GHz/1600MHz/20MB, 8x4GB, 1TB HS 2.5in SATA, 2x200GB 1.8in SATA SSD</td>
<td>8731A1x*</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>IBM Flex System Manager Per Managed Chassis with 3 Year SW S&S</td>
<td>90Y4222**</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>External shared storage</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IBM System Storage N Series</td>
<td>Varies</td>
<td>1</td>
</tr>
</tbody>
</table>

* The x in the part number represents a country-specific letter. For example, the EMEA part number is 8731A1G, and the US part number is 8731A1U. Ask your local IBM representative for specific details.
** Part number 90Y4222 is used for ordering the Features on Demand entitlement license in the United States, Canada, Asia Pacific, and Japan. Part number 95Y1174 is used for ordering the Features on Demand entitlement license in Latin America and Europe/Middle East/Africa.
For more information, see the following documents:

- **IBM Flex System Manager Sales Manual**
 http://www.ibm.com/common/ssi/rep_sm/1/897/ENUS5641-F01

- **IBM Flex System x240 Compute Node Sales Manual**
 http://www.ibm.com/common/ssi/rep_sm/1/897/ENUS8737-_h01

- **IBM Flex System Enterprise Chassis Sales Manual**
 http://www.ibm.com/common/ssi/rep_sm/1/897/ENUS7893-_h01

- **IBM Flex System Enterprise Chassis Product Guide**, TIPS0863
 http://www.redbooks.ibm.com/abstracts/tips0863.html

- **IBM Flex System Fabric EN4093 10Gb Scalable Switch Product Guide**, TIPS0864
 http://www.redbooks.ibm.com/abstracts/tips0864.html

- **IBM Flex System x240 Compute Node Product Guide**, TIPS0860
 http://www.redbooks.ibm.com/abstracts/tips0860.html

- **IBM Flex System Manager Product Guide**, TIPS0862
 http://www.redbooks.ibm.com/abstracts/tips0862.html

- **IBM Flex System CN4054 10Gb Virtual Fabric Adapter Product Guide**, TIPS0868
 http://www.redbooks.ibm.com/abstracts/tips0868.html

- **IBM Flex System Products and Technology**, SG24-7984
 http://www.redbooks.ibm.com/abstracts/sg247984.html

- **Implementing Systems Management of IBM PureFlex System**, SG24-8060
 http://www.redbooks.ibm.com/abstracts/sg248060.html

- **IBM Virtual Desktop offering home page**

- **xREF: IBM System x Reference Sheets**
 http://www.redbooks.ibm.com/xref

- **IBM Redbooks Product Guides for IBM Flex System servers and options**
 http://www.redbooks.ibm.com/portals/puresystems

- **IBM Flex System Information Center**
 http://publib.boulder.ibm.com/infocenter/flexsys/information/index.jsp

- **IBM System x Configuration and Options Guide**
 http://www.ibm.com/systems/xbc/cog

- **IBM System x Support Portal**
 http://ibm.com/support/entry/portal
Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult your local IBM representative for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service. IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not give you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to you. This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the materials for this IBM product and use of those Web sites is at your own risk. IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation to you. Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly available sources. IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products. This information contains examples of data and reports used in daily business operations. To illustrate them as completely as possible, the examples include the names of individuals, companies, brands, and products. All of these names are fictitious and any similarity to the names and addresses used by an actual business enterprise is entirely coincidental.

Any performance data contained herein was determined in a controlled environment. Therefore, the results obtained in other operating environments may vary significantly. Some measurements may have been made on development-level systems and there is no guarantee that these measurements will be the same on generally available systems. Furthermore, some measurement may have been estimated through extrapolation. Actual results may vary. Users of this document should verify the applicable data for their specific environment.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming techniques on various operating platforms. You may copy, modify, and distribute these sample programs in any form without payment to IBM, for the purposes of developing, using, marketing or distributing application programs conforming to the application programming interface for the operating platform for which the sample programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these programs.

© Copyright International Business Machines Corporation 2012. All rights reserved.

Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.